Trigonometri Contoh Step 1Ketuk untuk lebih banyak langkah...Untuk sebarang , asimtot tegaknya terjadi pada , di mana adalah sebuah bilangan bulat. Gunakan periode dasar untuk , , untuk menentukan asimtot tegak . Atur di dalam fungsi tangen, , untuk agar sama dengan untuk menentukan di mana asimtot tegaknya terjadi untuk .Bagi setiap suku pada dengan dan untuk lebih banyak langkah...Bagilah setiap suku di dengan .Sederhanakan sisi untuk lebih banyak langkah...Batalkan faktor persekutuan dari .Ketuk untuk lebih banyak langkah...Batalkan faktor sisi untuk lebih banyak langkah...Kalikan pembilang dengan balikan dari untuk lebih banyak langkah...Atur bilangan di dalam fungsi tangen agar sama dengan .Bagi setiap suku pada dengan dan untuk lebih banyak langkah...Bagilah setiap suku di dengan .Sederhanakan sisi untuk lebih banyak langkah...Batalkan faktor persekutuan dari .Ketuk untuk lebih banyak langkah...Batalkan faktor sisi untuk lebih banyak langkah...Kalikan pembilang dengan balikan dari untuk lebih banyak langkah...Periode dasar untuk akan terjadi pada , di mana dan adalah asimtot mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .Asimtot tegak untuk muncul pada , , dan setiap , di mana adalah bilangan hanya memiliki asimtot Ada Asimtot DatarTidak Ada Asimtot MiringAsimtot Tegak di mana adalah bilangan bulatTidak Ada Asimtot DatarTidak Ada Asimtot MiringAsimtot Tegak di mana adalah bilangan bulatStep 2Gunakan bentuk untuk menemukan variabel yang digunakan untuk menentukan amplitudo, periode, geseran fase, dan pergeseran 3Karena grafik fungsi tidak memiliki nilai maksimum ataupun minimum, tidak ada nilai untuk Tidak AdaStep 4Ketuk untuk lebih banyak langkah...Periode fungsi dapat dihitung menggunakan .Ganti dengan dalam rumus untuk mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .Step 5Tentukan geseran fase menggunakan rumus .Ketuk untuk lebih banyak langkah...Geseran fase fungsi dapat dihitung dari .Geseran Fase Ganti nilai dari dan dalam persamaan untuk geseran Fase Bagilah dengan .Geseran Fase Step 6Sebutkan sifat-sifat fungsi Tidak AdaPeriode Geseran Fase Tidak AdaPergeseran Tegak Tidak AdaStep 7Fungsi trigonometri dapat digambar menggunakan amplitudo, periode, geseran fase, pergeseran tegak, dan Tegak di mana adalah bilangan bulatAmplitudo Tidak AdaPeriode Geseran Fase Tidak AdaPergeseran Tegak Tidak Ada
Untukmemahami fungsi trigonometri secara umum, terlebih dahulu kita akan membahas grafik fungsi trigonometri dasar, yaitu grafik fungsi con sin back button, y cos back button dan y tan x.Grafik fungsi ini digambar dalam tata koordinat Cartesius yang menggunakan dua sumbu, yakni sumbu-X sebagai nilai sudut, dan sumbu-Y sebagai nilai fungsinya.
Aljabar Contoh Step 1Ketuk untuk lebih banyak langkah...Untuk sebarang , asimtot tegaknya terjadi pada , di mana adalah sebuah bilangan bulat. Gunakan periode dasar untuk , , untuk menentukan asimtot tegak . Atur di dalam fungsi tangen, , untuk agar sama dengan untuk menentukan di mana asimtot tegaknya terjadi untuk .Atur bilangan di dalam fungsi tangen agar sama dengan .Periode dasar untuk akan terjadi pada , di mana dan adalah asimtot periode untuk menemukan di mana asimtot tegaknya untuk lebih banyak langkah...Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .Asimtot tegak untuk terjadi pada , , dan setiap , di mana adalah bilangan terdapat asimtot tegak untuk fungsi tangen dan Tegak untuk sebarang bilangan bulat Tidak Ada Asimtot DatarTidak Ada Asimtot MiringAsimtot Tegak untuk sebarang bilangan bulat Tidak Ada Asimtot DatarTidak Ada Asimtot MiringStep 2Gunakan bentuk untuk menemukan variabel yang digunakan untuk menentukan amplitudo, periode, geseran fase, dan pergeseran 3Karena grafik fungsi tidak memiliki nilai maksimum ataupun minimum, tidak ada nilai untuk Tidak AdaStep 4Ketuk untuk lebih banyak langkah...Periode fungsi dapat dihitung menggunakan .Ganti dengan dalam rumus untuk mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .Step 5Tentukan geseran fase menggunakan rumus .Ketuk untuk lebih banyak langkah...Geseran fase fungsi dapat dihitung dari .Geseran Fase Ganti nilai dari dan dalam persamaan untuk geseran Fase Bagilah dengan .Geseran Fase Step 6Sebutkan sifat-sifat fungsi Tidak AdaPeriode Geseran Fase Tidak AdaPergeseran Tegak Tidak AdaStep 7Fungsi trigonometri dapat digambar menggunakan amplitudo, periode, geseran fase, pergeseran tegak, dan Tegak untuk sebarang bilangan bulat Amplitudo Tidak AdaPeriode Geseran Fase Tidak AdaPergeseran Tegak Tidak Ada
c f : x tan x (dibaca : " f memetakkan x ke tan x") atau dapat ditulis f(x) = tan x 2. Grafik Fungsi Trigonometri grafik trigonometri dapat Untuk menggambarkan sketsa menggunakan tabel. Grafik fungsi y = Sin x ( 0 < x < 360o) Tabel : x 0 30 60 90 120 150 180 210 240 270 300 330 360 1 1 3 1 1 3 1 0 - 1 - 1 3 -1 - 1 3 - 1 0 Y = Sin x 0 2 2 2AuthorUntung Trisna slider a, alpha, b, dan p. Selidiki pengaruh masing-masing nilai slider terhadap grafik y=sin x, y=cos x, atau y=tan x yang bersesuaianPertanyaan 1Jelaskan pengaruh nilai a terhadap 2Jelaskan pengaruh nilai alpha terhadap 3Jelaskan pengaruh nilai b terhadap 4Jelaskan pengaruh nilai p terhadap grafik. Inversfungsi Trigonometri ~202. Fungsi y = arc sin x ~ 204. Fungsi y = arc cos x ~ 205. Fungsi y = arc tan x ~ 207. Fungsi y = arc csc x ~ 208. Fungsi y = arc sec x ~ 210. Fungsi y = arc cot x ~ 211. BAGIAN 13. KALKULUS FUNGSI TRIGONOMETRI ~ 217. Limit Fungsi Trigonometri ~ 217. Turunan Fungsi Trigonometri ~ 221. Integral Taktentu Dari Fungsi Belajar Persamaan dan Cara Menggambar Grafik Fungsi Trigonometri Sumber Arsip Zenius Hai Sobat Zenius! Ketemu lagi, nih, sama gue. Di artikel kali ini gue akan bahas materi Grafik Fungsi Trigonometri. Materi yang katanya, sih, suka bikin pusing tujuh keliling. Tapi, tenang-tenang. Kunci dari belajar Trigonometri adalah pahami langkah demi langkah untuk memahami materi dan mengerjakan contoh soalnya. Nggak percaya? Yuk, buktiin bareng-bareng! Simak materi terkait Persamaan Grafik Fungsi Trigonometri hingga cara menggambarnya, yuk. Apa itu Persamaan Grafik Fungsi Trigonometri?Cara Menggambar Grafik Fungsi Trigonometri Contoh Soal Grafik Fungsi Trigonometri Apa itu Persamaan Grafik Fungsi Trigonometri? Pernah nggak sih, elo kepikiran? Buat apa, sih, belajar Trigonometri? Mana susah banget, lagi! Jangan salah! Ternyata Trigonometri banyak diterapkan di kehidupan sehari-hari, lho. Contohnya, untuk mengukur tinggi gedung-gedung pencakar langit hingga memperkirakan jarak benda-benda di luar angkasa. Sesuai namanya, Persamaan Grafik Fungsi Trigonometri merupakan persamaan yang memuat Fungsi Trigonometri dari sudut yang belum diketahui nilainya. Gimana tuh, maksudnya? Cuzz, pelajari di bawah, ya! Sebelum mulai menggambar Grafik Fungsi Trigonometri, elo harus tahu dulu, nih, jenis-jenis Fungsi Trigonometri. Mengapa? Karena beda fungsi beda pula grafiknya, dong. Pembagian Jenis-jenis Fungsi Trigonometri tentu masih berkaitan dengan tiga sekawan trigonometri, yaitu sin, cos, dan tan. Grafik Fungsi Sinus y= sin x Nah, sekarang gue punya fungsi y=x. Gimana cara menggambar Grafik Fungsi Trigomometrinya? Masih inget, nggak? Pertama, tentu nilai x-nya harus diketahui dulu, dong. Misal x = 1 karena y = x, maka nilai y juga 1. Begitu pula ketika nilai x = 2, ya y-nya juga 2, dan seterusnya… Kalo elo masih bingung kira-kira gini gambarannya y=x. xy = x11223344Tabel y = x Nah, baru deh elo gabungkan titik-titik tersebut hingga membentuk sebuah grafik seperti berikut. Grafik Fungsi Sinus y= sin x Nah, sekarang kalo gue punya nilai fungsi y= sin x. Gimana cara menentukan Grafik Fungsi Trigonometrinya? Nah, untuk menentukan grafiknya, elo harus inget-inget lagi sudut istimewa. Nilai dari sudut istimewa berkaitan juga dengan materi Grafik Fungsi Trigonometri, lho. Untuk membantu elo mengingat nilai sudut istimewa sinus, perhatikan tabel berikut. Tabel Sudut Istimewa Sinus Sumber Arsip Zenius Setelah nilai fungsi sinus diketahui, langkah selanjutnya adalah mengubah sin x menjadi angka-angka di atas. Dan masukkan ke grafiknya. Taraaa, jadi, deh, grafik kayak di bawah ini. Grafik Fungsi y= sin x Sumber Arsip Zenius Nah, kalau Persamaan Grafik Fungsi Trigonometrinya diubah menjadi y= a sin x dengan a = 3, grafiknya berubah lagi jadi seperti ini. Grafik y=a sin x Sumber Arsip Zenius Perubahan nilai a mengakibatkan perubahan amplitudo gelombang pada grafik di atas. Oh iya, mungkin elo bertanya-tanya, kok grafik di atas nggak dicantumin angkanya? Emang boleh, ya? Yap, boleh-boleh aja, Sobat Zenius. Ini disebut juga grafik halus. Seperti yang gue gambarkan di atas. Baca Juga Asal Usul Pembuktian Konsep Trigonometri Grafik Fungsi Cosinus y = cos x Tadi kan elo udah nyoba bikin Grafik Fungsi Sin dari persamaan y= sin x. Sekarang, kalau persamaannya sedikit gue ubah jadi , gimana cara menggambar grafiknya, ya? Kalo elo udah paham polanya harusnya udah kebayang cara ngerjainnya, sih. Masih inget, dong, apa langkah pertama yang harus elo lakuin? Yoi, ketahui dulu nilai fungsi cosinusnya. Cek tabel di bawah ini, ya, untuk mengetahuinya. Tabel Sudut Istimewa Cosinus Sumber Arsip Zenius Nah, kalau elo udah punya titik-titiknya, tinggal elo gambarkan ke diagram kartesius, deh. Sambil latihan, coba elo gambaran dulu, deh, grafiknya. Baru nanti kita cocokkan apakah sama atau nggak. Oke? Mencoba Menggambar Grafik Fungsi Cartesius Sumber Gimana? Udah selesai, kah? Coba kita cocokkan jawabannya, yuk! Grafik Fungsi Cosinus yang Terbentuk Sumber Arsip Zenius Gambar di atas merupakan gambar Grafik Fungsi Cosinus yang terbentuk dari fungsi y= cos x . Gimana? Sama nggak dengan yang elo gambar? Sebenarnya grafik di atas masih bisa dilanjutin lagi, lho. Gimana tuh, maksudnya? Cosinus merupakan fungsi periodik yang selalu berulang setiap periodenya. Satu periode cosinus merupakan 360 derajat, artinya grafiknya akan berulang terus setiap 360 derajat. Kalau gambarnya kita lanjutin terus, akan membentuk periode yang berulang seperti pada gambar di bawah ini. Fungsi Periodik yang Berulang Sumber Arsip Zenius Jadi, nggak ada kata mentok di fungsi cosinus, guys, baik yang di sebelah kanan maupun kiri. Dari gambar di atas pun sebenarnya masih terus dilanjutkan. Baca Juga Pertidaksamaan Trigonometri dan Cara Penyelesaiannya – Materi Matematika Kelas 11 Grafik Fungsi Tangen y = tan x Masih sama dengan cara menggambar kedua grafik sebelumnya. Elo harus tahu dulu sudut istimewa dan nilai fungsi tangen-nya. Kalau elo lupa, bisa cek pada gambar di bawah ini. Tabel Sudut Istimewa dan Nilai Fungsi Tangen Sumber Arsip Zenius Untuk menggambar grafiknya, nggak jauh berbeda dengan cara menggambar grafik fungsi sinus dan cosinus. Dari tabel di atas, elo kan udah punya titik-titik yang dibutuhkan untuk menggambar grafik, langsung aja masukkan titik-titik tersebut ke dalam diagram kartesius. Grafik Fungsi Tangen Sumber Arsip Zenius Jadi deh, grafik y= tan x. Tapi, bentar-bentar. Ada yang bingung, nggak? Kok pada saat x=90 dan x=270nggak ada grafiknya? Kira-kira kenapa, ya? Nah, coba elo balik lagi ke nilai fungsi tangen, deh. Nilai pada saat x=90 dan x=270 adalah nggak terdefinisi. Hal ini mengakibatkan grafiknya terpotong dan nggak tahu, nih, mau dibawa kemana hubungan kita~ eh kok jadi nyanyi? Sama dengan cosinus, tangen juga merupakan fungsi periodik yang grafiknya selalu berulang setiap periodenya, lho. Bedanya, periode tangen bukan 360 derajat. Akan tetapi, 180 derajat. Maka, grafik tangen jika terus berulang akan menjadi seperti ini. Grafik Fungsi Tangen Sumber Arsip Zenius Jadi, untuk menggambar Grafik Fungsi, baik sinus, cosinus, maupun tangen, elo harus inget langkah-langkah berikut Ketahui terlebih dahulu nilai fungsi sin, cos, maupun tan. Dari nilai fungsi tersebut, elo bisa ketahui titik-titik yang akan digambarkan ke diagram kartesius. Terakhir, gambar grafik fungsinya. Baca Juga Materi Trigonometri, Rumus Sin Cos Tan & Pembahasannya Contoh Soal Grafik Fungsi Trigonometri Selesai juga pembahasan materi Grafik Fungsi Trigonometri. Gimana, Sobat Zenius? Semoga artikel ini bermanfaat dan bikin pemahaman materi Grafik Fungsi Trigonometri elo makin kece, ya! Nah, untuk menguji pemahaman elo, gue udah siapin beberapa contoh soal Grafik Fungsi Trigonometri, nih! Langsung sikat, yuk!! Perhatikan gambar di bawah ini. Contoh Soal 2 Contoh Soal 3 Perhatikan gambar berikut. *** Oke, sebelum masuk ke penutup. Gue ingin ngingetin nih kalau Zenius punya paket belajar yang siap nemenin perjuangan elo! Klik gambar di bawah ini biar elo bisa rasain langsung serunya belajar bareng Zenius! Sampai juga kita di penghujung artikel kali ini? Gimana? Trigonometri itu mudah bukan? Materi yang susah itu bukan cuma untuk diucapkan aja, Sobat Zenius. Susah nggak akan jadi mudah kalau elo nggak berusaha mempelajarinya. Gue jadi inget salah satu quotes Jerome Polin di bukunya yang berjudul Mantappu Jiwa 2019, “Di mana ada niat, asal mau berusaha, pasti ada jalan” So, tetap semangat belajar, ya! Nah, supaya pemahaman elo makin oke, elo bisa pelajari materi menggambar grafik fungsi trigonometri secara lengkap di Zenius, lho. Yuk, klik banner di bawah ini!